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An asymptotic method of solving problems of the propagation of waves in strings is proposed which 

uses the value of the characteristic deformation as the small parameter. The method is demonstrated 

using the example of the point action on a fixed particle of the string, which models it by a non- 

stationary displacement (this action is usually called a transverse shock [l, 21. 

In the case considered, the transverse waves that propagate along the string with velocity a, produce 
a corresponding tension in front of the transverse head wave, the velocity of which is much less than 

%. The equation for the momentum in the initial direction of the string in the zeroth approximation 

leads to the fact that the tension is independent of the coordinate in the region where the transverse 

waves propagate. After determining the transverse displacements in this region the field of the 

longitudinal velocities and the longitudinal deformations are found, where the longitudinal and 

transverse components of the deformation in the zeroth approximation considerably exceed the overall 

deformation in value (their order of magnitude is lower than the order of magnitude of the latter). 

For the case of a power dependence of the velocity of the applied force (a transverse shock) on time, 

when there is no initial tension in the string, the field of the transverse displacements has a self-similar 

form. 

1. SUPPOSE that at the instant of time t = 0 a point action (an impulse) is applied to a flexible string of 

infinite length situated along the x axis, leading to displacement of the point s0 = 0 as given by the relation 

x=x,,(t), y = y,,(t) (s, is the Lagrangian coordinate). The equations of motion of the string have the 

form [l] 

a2x a a”y 
p. - = -(l-costp), p. - = 

ata as, 
a u-sin~) 

at2 as, 
(1.1) 

Here p0 is the initial density of the string, assumed constant, x, y are the displacements of the point s,,, 
T is the tension, which is a function of the strain e, (p is the angle of inclination of the element of the string 
to its initial direction, and 

ax w 
)” 1% - 1, 

ax 
e=[(l+ -)* +(- cosq= (1 + ----)(I +e)-1, 

aso 
as 

‘ aso 

sinq= z(I+e)‘l 
aso 
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The characteristics of system (1.1) and the relations for them have the following form [l] 

ds,/dt = f a, coslpdu + sinlpdv = + a(coslpdp + sinlpde) 

ds,/dt = i h, coslpdu - sinqdu = f A(coslpdb - sinlpdp) 
(1.2) 

1 dT T ax ay ax 
a= = - - , h’= 

pa (1 + e) ’ 

“Z-.-, UC--, PC-_. fi= “y 

p. de at at as, ah 

If we assume that when t = 0 we have u = u,, = const, Jo = pO, v = 19 = 0, then since the line t = 0 is not a 
characteristic, I I. 1~1 a I, the solution in the region 0 < t < s,, /a, will be u = u,,, v = 19 = 0, p = puo (see Fig. 1). 
Here s,, > 0, a, = a@,). This result can be obtained in two ways: either by taking into account the fact that 
the solution obtained satisfies system (1.2), the initial conditions, and is unique (for the Cauchy problem), 
or by writing (1.2) in finite differences and solving (taking into account the homogeneity of the initial 
conditions when Q = 0). 

Behind the elastic wave s,, = a,t it follows from the relations on the characteristics ds, ldt = *I. written 
in finite differences, taking into account the fact that q(A) = q(B) = 0, that 

u(P)=h,9(P), u(P)=lY(P)=O, q(P)=0 (1.3) 

if the point P is sufficiently close to the points A and B. 

From the relation on the characteristic ds, ldt = -a, we obtain 

u(P)=-a,[u(P)-PO1 +Uo (1.4) 

Relations (1.3) and (1.4) will obviously be satisfied for all points on the characteristic so-so(P)= 

a,[t-t(P)]. Taking the point Q on this characteristic and drawing the characteristics ds,ldt= k(P), 

ds, / dt = -3Q) through points P and Q when the deformations are equal p(P) = p(Q), and consequently 

k(P)= L(Q), we again obtain v(R)= 19(R)= 0; u(R) = -a&u(R)-p,] +uO. Hence, it can be shown that in the 

region bounded by their characteristics s,, = a,t and the characteristic s0 = s:(t), sb (0) = 0, where 
ds,* ldt = ;1, the string has no transverse velocities and deformations, while the longitudinal velocities and 

deformations are connected by the relation 

(1.5) 

2. The extent of the region of propagation of transverse waves is much narrower than for longitudinal 
waves, since a - a, d(e,), st - a,p/(e,). In view of the fact that e, 4 1, coscp - 1, cp - r9, from the first 
equation (l.l), taking into account the fact that u - a,e,, we obtain 

so 
T(s,, t) - Us;, t) = I, p. “” ds 0, e(sO,t)-e(s:,t)-e, % 

so at 

FIG. 1. 
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Consequently, in the principal approximation e(s,, t)=e(s:, t), which reduces the second equation of 

(1.1) to an equation of small transverse oscillations, the velocity of propagation of which depends on time. 

This result can be obtained by the method of matched asymptotic expansions, if we change to new 
functions and independent variables Y = ~/(a,$,, e,), y’= y/(V,t,); T = Ee,,F, z = s,, IF,,, 7 = t/t,, To = eoaot,, 

and seek the limiting form of Eqs (1.2) as e, + 0 assuming the functions introduced and their derivatives 
to be finite. The first equation of (1.1) then takes the form 

% aax ae 
e0 -=- 

aT a az 
(2.1) 

and as e, + 0 for the principal approximation gives bldz = 0, .Z = Z(i). We will write the second equation 

as 

a27 a*7 
- = e(i) - 

at’ a? 

The expression for the deformation 

ax v,1 - 
e,Z - e,Y1-+ - (?)I 

a2 2a:e, az 

(2.2) 

(2.3) 

shows that the first term in the principal approximation has an order that is much lower than e,, and 

should be of the same order as the second term, and, moreover, equal to the principal approximation of 
the latter with opposite sign. Otherwise either $I&=0 or Z/&Z =O, which gives no solution of the 

problem in question. Consequently, E = V, .a;’ - e:“. Note that in [2], where the problem of a shock 
along a string with constant velocity was formulated for the first time, a similar dependence of the velocity 

on the deformation was found after the solution was obtained. 

Thus. from the relation 

aF v: a7 
_=--- 2 

az 2a:e,'L (G’ (2.4) 

after solving Eq. (2.2) on the assumption that jr&), Z(i) and Z&,(i) are specified, we obtain the principal 
approximation for Y(z, t). From (1.5) we can determine the relation between the displacement y,,,(F) and 

the deformation Z(T). 
From Eq. (2.1) we can further determine the variation of the overall deformation in the region of 

transverse motion, from (2.2) we obtain the next term of the asymptotic expansion for L, and then, from 

(2.3) we can obtain the next term of the asymptotic expansion for Y, etc. 

3. We will construct a solution of the problem for the case when the initial deformation of the string 
p,, = 0 and yJf)= At’” (m > 1) (the velocity of the shock yi =An~t”‘-~). We will use the semi-inverse 
method, assuming that the variation of the overall deformation in this case is given by the power relation 
e=Bt”. 

For the case considered 

e < 1 ds*/dt =a BtAt”12 3 0 0 ~*=a B’(1 +n/2r’t1+“12 9 0 a 

Note that for a given e(t) the conditions ~(0, t) = y,,(t), y(so , * t) = 0 define a unique solutions of Eq. (2.2), 
which when e(t) = Bt”, y, = At” will be the function y = At’“f(z), z = so is,*. 

The function f( z) satisfies the equation and boundary conditions 

m(m - l)f- (1 +n/2)(2m - 2 - n/2)zf’= (1 +n/2y (1 -z’)f” (3.1) 

f(O)= 1, f(l)=0 
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We will consider the behaviour of flz) as z j 1, by writing 

Then N = (2m + n/ 2)(2 + n)-’ and when N > 1 we have f’(1) = 0. 
When N >1 there is no discontinuity on the transverse head wave, and hence the longitudinal 

components of the velocity on it are not disrupted. 
From (2.4) we obtain 

AS 
x=x,(r)- - 

2a,fi 
(1 + n/2) t2m-1-ni2 ; f’“dz 

0 

On the head wave z= 1 when IV > 1, in the case when xi =O, which we will use to simplify the 

calculations, the longitudinal component of the velocity 

A’(1 +n/2)(2m - 1 -n/2) 

%Jzr 

t2m-2--n/2 ‘f”& = _a,e(t) 
ii 

Hence n = 4/3(m - I), i.e. e - yi413, which might have been expected in accordance with the asymptotic 
problem. In this case, N - 1 = 2r$ - l)(Zm - 1)-l > 0 when m > 1, which indicates that there is no break on 
the transverse head wave for all m > 1, but there is when m = 1. When m > 1 the condition of continuity of 
the longitudinal velocities when z = 1 leads to the following relationship between the coefficients in the 
velocity and deformation relations 

(1 + Zmf(4m - l)A’ ff”dr = 18a:.B’h 
0 

Equation (3.1) then takes the form 

Lf=m(m- I)f-4/0(1+2m)(m - l)zf’- ‘/,(I +2mI’(l -z’)f”=o (3.2) 

and can be solved n~erically or approximately. In the latter case, we can use the method of integral 
relations, representing the solution approximately in the form 

f(z)=c(l -z)N+(l --c)(l -&J+r 

which ensures that the boundary conditions are satisfied when z = 0 and z = 1 and the asymptotic form 

when ~41. 
By satisfying Eq. (3.2) integrally in the form 

we obtain the unknown constant 

C=6m(23m2 4 llm+2)(2m+ ly3(73m1 +m -2)1# 

the method can be generalized to the problem of a shock on an elastic string by a blunt body and also to 
the problem of a shock on elastic membranes. 
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